Spring 2017 MATH5012

Real Analysis II

Exercise 6

(1) Let $f \in L^1(\mu)$ on some measure space (X, μ) . Show that for each $\varepsilon > 0$, there exists some δ such that

$$\int_E |f| < \varepsilon, \quad \text{ for all } \mu\text{-measurable } E, \mu(E) < \delta \ .$$

(2) Setting as in (1), a class of integrable functions C is called uniformly integrable if the δ in (1) can be chosen to fit for all f in C. Show that C is uniformly integrable if and only if, for every $\varepsilon > 0$, there is some M such that

$$\int_{\{x:|f|\geq M\}} |f| d\mu < \varepsilon, \quad \forall f \in \mathcal{C} .$$

(3) Let $\{f_k\}$ be a sequence of integrable functions in (X, μ) satisfying

$$\int |f_k| \log(1+|f_k|) d\mu \le M , \quad \forall k \ge 1 ,$$

for some M. Show that $\{f_k\}$ is uniformly integrable.

- (4) (a) Display a sequence of integrable functions in [-1, 1] whose L¹-norm is uniformly bounded and yet does not subconverge to any integrable function.
 - (b) Display a sequence of uniformly integrable functions in R which does not subconverge to any integrable function.